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A corridor variance swap, with corridor C, on an underlying Y is a weighted variance swap on
X := log Y (unless otherwise specified), with weight given by the corridor’s indicator function:

w(y) := Iy∈C . (1)

For example, one may define an up-variance swap by taking C = (H,∞), and a down-variance
swap by taking C = (0, H), for some agreed H.

In practice, the corridor variance swap monitors Y discretely, typically daily, for some number
of periods N , annualizes by a factor such as 252/N , and multiplies by notional, for a total payoff

Notional×Annualization×
N∑
n=1

IYn∈C

(
log

Yn
Yn−1

)2

. (2)

If the contract makes dividend adjustments (as typical for contracts on single stocks but not on
indices), then the term inside the parentheses becomes log((Yn+Dn)/Yn−1), where Dn denotes the
dividend payment, if any, of the nth period.

Corridor variance swaps accumulate only the variance that occurs while price is in the corridor.
The buyer therefore pays less than the cost of a full variance swap. Among the possible motivations
for a volatility investor to accept this trade-off, and to buy up (or down) variance are the following.
First, the investor may be bullish (bearish) on Y . Second, the investor may have the view that
the market’s downward volatility skew is too steep (flat), making down-variance expensive (cheap)
relative to up-variance. Third, the investor may be seeking to hedge a short volatility position that
worsens as Y increases (decreases).

Model-free replication and valuation

The continuously-monitored corridor variance swap admits model-free replication by a static posi-
tion in options and dynamic trading of shares, under conditions specified in the weighted variance
swap article, which include all positive continuous semimartingale share prices Y under determin-
istic interest rates and proportional dividends.
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Explicitly, one replicates using that article’s (7), with payoff derived in [3]:

λ(y) =
∫
K∈C

2
K2

Van(y,K)dK, (3)

where Van(y,K) := (K − y)+IK<κ + (y −K)+IK>κ for an arbitrary put/call separator κ.
Therefore, in the case that the interest rate equals the dividend yield (otherwise, see the weighted

variance swap article), a replicating portfolio statically holds 2/K2dK out-of-the-money vanilla calls
or puts at each strike K in the corridor C. The corridor variance swap model-independently has
the same initial value as this portfolio of Europeans. Additionally, the replication strategy trades
shares dynamically according to a “zero-vol” delta-hedge, meaning that its share holding equals
the negative of what would be the European portfolio’s delta under zero volatility.

For corridors of the type C = (0, H) or C = (H,∞) where H > 0, taking κ := H in (3) yields

λ(y) = (−2 log(y/H) + 2y/H − 2)Iy∈C . (4)

This λ, with H chosen arbitrarily, is also valid for the variance swap C = (0,∞).

Further properties

1. For a small interval C = (a, b), the corridor variance swap approximates a contract on local
time, in the following sense. Corridor variance satisfies

V
(a,b)
T :=

∫ T

0
IXt∈(log a,log b)d〈X〉t =

∫ log b

log a
LxTdx,

by the occupation time formula, where LxT denotes (an x-cadlag modification of) the local
time of X. Therefore, at any point a,

1
log b− log a

V
(a,b)
T −→ LaT , as b ↓ a.

2. Corridor variance can arise from imperfect replication of variance. The replicating portfolio
for a standard variance swap holds options at all strikes K ∈ (0,∞). In practice, not all
of those strikes actually trade. If we truncate the portfolio to hold only the strikes in some
interval C, then the resulting value does not price a full variance swap but rather a C-corridor
variance swap. (Moreover, in practice not even an interval of strikes actually trade, but rather
a finite set, which can replicate instead a strike-to-strike notion of corridor variance, as shown
in [1].)

3. In the case C = (H,∞) where H > 0, we rewrite (4) as

λ(y) =
2
H

(y −H)+ − 2(log y − logH)+.

Thus the replicating portfolio is long calls on YT and short calls on log YT .
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Let FXT
be the characteristic function of XT = log YT . Then techniques in [4] and [5] price the

calls on YT and log YT respectively. Specifically, assuming zero interest rates and dividends,
we have the following semi-explicit formula for the corridor variance swap’s fair strike:

Eλ(YT )− λ(Y0) =
2
Hπ

∫ ∞−αi
0−αi

Re
(FXT

(z − i)
iz − z2

e−iz logH
)

dz

+
2
π

∫ ∞−βi
0−βi

Re
(FXT

(z)
z2

e−iz logH
)

dz − λ(Y0),
(5)

for arbitrary positive α, β such that α+ 1, β < sup{p : EY p
T <∞}.

In the case C = (0,∞), equation (4) implies the fair strike formula

Eλ(YT )− λ(Y0) = −2E log(YT /Y0) = 2iF ′XT
(0) + 2 log Y0. (6)

In the case C = (H1, H2) where 0 ≤ H1 < H2, subtract the formula for C = (H2,∞) from
the formula for C = (H1,∞).

In the case of nonzero interest rates or dividends, add to (5) a correction involving payoffs at
all expiries in (0, T ), as specified in weighted variance swap article’s (7a); and in (6) replace
the Y0 by the forward price.

4. With discrete monitoring, the question arises, how to define up-variance and down-variance,
and in particular how much variance to recognize, given a discrete move that takes Y across H.
Definition (2) recognizes the full square of each move that ends in the corridor. Alternatively,
the contract specifications in [2] treat the movements of Y across H by recognizing a fraction
of the squared move. The fraction is defined in a way that admits approximate discrete
hedging, in the sense that the time-discretized implementation of the continuous replication
strategy has in each period a hedging error of only third-order in that period’s return.
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