Shortly before his death, Alan Turing published a provocative paper outlining his theory for how complex, irregular patterns emerge in nature—his version of how the leopard got its spots. These so-called Turing patterns have been observed in physics and chemistry, and there is growing evidence that they also occur in biological systems. Now a team of Spanish scientists has managed to tweak E. coli in the laboratory so that the colonies exhibit branching Turing patterns, according to a recent paper published in the journal Synthetic Biology.
"By using synthetic biology, we have a unique opportunity to interrogate biological structures and their generative potential," said co-author Ricard Solé of Universitat Pompeu Fabra in Barcelona, Spain, who is also an external professor at the Santa Fe Institute. "Are the observed mechanisms found in nature to create patterns the only solutions to generate them, or are there alternatives?"
In synthetic biology, scientists typically stitch together long stretches of DNA—which can be taken from other organisms, or be entirely novel—and insert them into an organism's genome.
As we've reported previously, Turing was attempting to understand how natural, nonrandom patterns emerge (like a zebra's stripes or a leopard's spots), and he focused on chemicals known as morphogens in his seminal 1952 paper. He devised a mechanism involving the interaction between an activator chemical that expresses a unique characteristic (like a tiger's stripe) and an inhibitor chemical that periodically kicks in to shut down the activator's expression.
Both activator and inhibitor diffuse throughout a system, much like gas atoms will do in an enclosed box. It's a bit like injecting a drop of black ink into a beaker of water. Normally this would stabilize a system: the water would gradually turn a uniform gray. But if the inhibitor diffuses at a faster rate than the activator, the process is destabilized. That mechanism will produce a so-called "Turing pattern": spots (like on a leopard) or stripes (like on a tiger).